Abstract

Due to the low density, high specific strength, elastic modulus and oxidation resistance at high temperature, TiAl-based alloys have attracted much attention as a candidate of the next gen- eration high temperature materials in aerospace and automobile application. Meanwhile, the excellent properties oxidation resistance, creep strength and tensile strength at the elevated temperature make the high Nb containing TiAl alloys be one of the promising development directions of future TiAl alloys. During the studies about alloying which is an efficient way to improve theperformance of TiAl alloys, researchers have found that interstitial atoms B, C and N notably refine the grains and then improve mechanical properties including yield strength, micro-hardness, and tensile ductility of TiAl alloys. During the melting, casting, forging and the application environment, the TiAl alloys also are always inevitable to be contaminated by the O. In this work, the high Nb containing Ti-46Al-8Nb-xO alloys (atomic fraction) were prepared by non-consumable vacuum arc remelting under the protection of Ar atmosphere. The aim of the present work is to study the influence and the corresponding mechanism of oxygen atoms on the microstructure evolution and phase transformation of high Nb-TiAl alloys. The results indicate that oxygen atoms in Ti-46Al-8Nb-xO alloys remarkably increase the amount of �2 phase. The increasing oxygen content leads to the grain refinement. Meanwhile, the duplex mi- crostructures translate into fully lamellar. It indicates that the interstitial oxygen essentially reduces the kinetics of � ! . Consequently, the fully lamellar is easier formation than the duplex microstruc- tures. It is found that interstitial oxygen atoms preserve significantly influence on the microstructure of Ti-46Al-8Nb-xO alloys. With the increase of oxygen content, thesolidification translates into �

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.