Abstract
The effect of dissolved oxygen concentration on nitrogenase activity was studied in three species of photosynthetic bacteria. The O2 concentration in the cell suspension was measured with an O2 electrode inserted into the reaction vessel. Acetylene reduction by whole cells of Rhodopseudomonas capsulata, Rhodospirillum rubrum, and Chromatium vinosum strain D was inhibited 50% by 0.73, 0.32, and 0.26 microM O2, respectively. The inhibition of the activity by O2 in R. capsulata usually was reversed completely by reestablishing anaerobic conditions. In R. rubrum and C. vinosum the inhibition was only partially reversible. The respiration rate of R. capsulata was the highest of the three, that of R. rubrum was intermediate, and that of C. vinosum was lowest. R. capsulata and R. rubrum cells were broken after their acetylene reduction activity in vivo had been completely inhibited by O2, and nitrogenase was found to be active in vitro. A concentration of cyanide that did not affect acetylene reduction activity, but which inhibited 75 to 90% of the O2 uptake by whole cells of R. capsulata, shifted the O2 concentration causing 50% inhibition of nitrogenase activity from 0.73 microM to 2.03 microM. These results are in accordance with the assumption that within a limited range of O2 concentrations, the respiratory activity of the cells is enough to scavenge the O2 and to keep the interior of the cells essentially anaerobic. It is suggested that O2 inhibits nitrogenase activity by competing for a limited supply of electrons. When cyanide is present, respiration is slower but is adequate to keep the nitrogenase environment in the cell anaerobic. The lower respiration rate may allow a greater proportion of the electrons to be used for acetylene reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.