Abstract

The orientations of oxide nuclei during the oxidation of Cu(100), (110) and (111) surfaces have been examined by in situ transmission electron microscopy. Our results indicate that the epitaxial nucleation of oxide islands on these surfaces cannot be maintained for a whole range of oxygen gas pressure varying from 10−5Torr to 750Torr. The critical oxygen gas pressure, pO2, leading to the transition from nucleating epitaxial to non-epitaxial oxide nuclei shows a dependence on the crystallographic orientations of the Cu substrates with pO2(100)>pO2(111)>pO2(110). By fitting the experimentally determined critical oxygen pressures to a kinetic model, we find that such dependence can be attributed to the effect of surface orientations of the Cu substrates on the oxygen surface adsorption and diffusion, which dominate the kinetic processes of oxide nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call