Abstract

Escherichia coli DH5alpha, carrying the pUC19 plasmid for the lacZ fragment of beta-galactosidase and ampicillin resistance, was grown in a batch fermentor under conditions of fluctuating oxygen supply. A Monte Carlo method was used to control the on/off supply of air to simulate circulation of cells in a large fermentor. Rapid changes in oxygen supply reduced the rates of oxygen uptake the carbon dioxide release and prolonged the active second growth phase in batch culture, compared to growth with continuous aeration. Amplification of the plasmid was observed during the stationary phase when air supplied continuously, but not during the Monte Carlo experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call