Abstract

Nanostructured ZnO films (undoped and Ga, Co, Mn doped) were exposed to oxygen (1–80 vol.%) at temperature range of 300–500 °С in order to reveal the ambience–temperature effect on the electrical conductivity. The dominant effect of ambient influence via oxygen absorption was observed: the intensity of conductivity decrease was found to be proportional with temperature and tends to saturate with time. It is demonstrated that oxygen absorption occurs accordingly to diffusion law and the quantifying of oxygen diffusion was realized for different samples. It is revealed that the type of dopant affects the diffusion in ZnO and the tendency to increase the diffusion intensity with dopant content has been observed. After oxygen saturation the reversible effect of oxygen adsorption became dominant and contributed to the film's conductivity. Oxygen exposure undoped ZnO films revealed high sensitivity for oxygen content change in the ambience therefore they have been preceded further for gas sensor design and the detailed investigation of film's sensing properties has been carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.