Abstract

Abstract The present study reports the effect of oxygen content on the structural, magnetic and magnetocaloric properties in the (La0.7Pr0.3)0.8Sr0.2Mn0.9Co0.1O3±δ (δ = +0.02, +0.01, −0.03) in the temperature range of 5–723 К. It has been found that the temperatures of structural phase transitions vary significantly depending on the oxygen index value, δ. In oxygen-deficient samples (δ = −0.03), two structural phase transitions are observed: O′ → O and O → R (O′ – Orbitally ordered orthorhombic phase, O – Orbitally disordered orthorhombic phase, R – Rhombohedral phase). In excess oxygen samples (δ = +0.02, +0.01), the O′-phase is not formed. The O → R transition temperature increases with decreasing δ from TO→R = 353 K (δ = +0.02) to TO→R = 623 K (δ = −0.03). Magnetic measurements show that all our compounds exhibit a paramagnetic-ferromagnetic transition at TC ∼ 205 K. The Arrott plots reveal the occurrence of a second order phase transition. It was found that the transition temperature TC depends on the magnitude of the applied magnetic field, which rarely happens for materials with phase transitions of the second order. It has been shown from evaluation of the Temperature averaged Entropy Change (TEC) that a wide temperature range of MCE does not satisfies the requirements of using the compounds studied as an effective magnetocaloric material for magnetic refrigeration. The substitutions in cation sublattices and oxygen non-stoichiometry have negligible effect on TC and magnetocaloric effect (MCE). To investigate the magnetic interactions responsible for the magnetic transitions, the analysis was done by using the modified Arrott plot (MAP) method. The obtained values of the critical exponents matched well with those predicted for the isotropic short range 3D-Heisenberg model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.