Abstract

Dry reforming and partial oxidation of biogas were studied using 0.5wt.% Rh/Al2O3 catalysts, both in-house prepared and commercial. The effects of O2 addition on syngas yield and biogas conversion were studied at 700°C using different O2/CH4 ratios in the gas feeding stream: 0 (dry reforming), 0.12, 0.25, 0.45 and 0.50. The highest CH4 conversion, H2 yield and H2/CO molar ratio were obtained with an O2/CH4 ratio of 0.45, even though simultaneous valorization of both CH4 and CO2 could be best attained when the O2/CH4 ratio was 0.12. Increased biogas conversions and syngas yields were obtained by increasing reaction temperatures between 650 and 750°C. A detrimental influence on catalytic activity could be observed when the catalyst was subjected to calcination. Increasing the hold time of the thermal conditioning of the catalyst under inert flow altered Rh dispersion, though had no significant impact on catalyst performance in the dry reforming of methane at 700°C and 150N L CH4/(gcath). Characterization of spent samples after reaction by Raman spectroscopy revealed the presence of carbonaceous deposits of different nature, especially on the commercial (named as Rh com) and calcined (Rh calc) catalysts, though oxygen addition in the biogas feed significantly reduced the amount of these deposits. The Rh catalysts that had not been calcined after impregnation (Rh prep) did not present any noticeable characteristic peaks in the G and D bands. In particular, scanning transmission electron microscopy (STEM) images of the spent Rh prep sample revealed the presence of very highly dispersed Rh nanoparticles after reaction, of particle sizes of about 1nm, and no noticeable C deposits. Combined oxy-CO2 reforming of biogas using highly dispersed and low metal-loading Rh/Al2O3 catalysts with low O2 dosage in the reactor feed can be used to effectively transform biogas into syngas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.