Abstract

Molecular dynamics simulation using reactive force field (ReaxFF)potential was implemented to study the oxidation mechanism in aluminium particles with two different alumina shells. That is, without an oxide shell and with a 1 nm oxide shell. In particular, this research investigated the atomic diffusivity of the system on the oxide shell effect. The results showed that in the heating process, oxygen molecules were adsorbed on the surface of the shell and then diffused to the particle core as the heating temperature increased. The diffusivity of oxygen molecules in the aluminium core which causes the oxidation process to occur, shows that the particles without the oxide shell are faster than the particles with the oxide shell. Although after relaxation, there are similarities in having an oxide shell. However, the thickness is different. This shows that the coating on Al particles can inhibit the rate of oxidation. The thickness of the oxide shell also affects the rate of oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.