Abstract
The long-term corrosion behavior of IN-RAFM steel in molten Pb-Li upto 10, 000 h of exposure was studied in a rotating disc corrosion test facility at 823 K. As-received IN-RAFMS material possessed an air-formed surface layer containing oxides of Fe, Ce and W. Precipitation of chromium carbides at the grain/lath boundaries of as-received IN-RAFMS led to grain boundary attack by liquid Pb-Li during the initial “Incubation Period” which depicted slow dissolution of surface oxides and lesser corrosion rate. Complete dissolution of oxide layer altered the corrosion mechanism from grain boundary attack to matrix dissolution thereby increasing the corrosion rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.