Abstract

Enzymes belonging to the S9 family of prolyl oligopeptidases are of interest because of their pharmacological importance and have a non-catalytic β-propeller domain. In this study, we found that the oxidation of Met203, which lies on surface of the β-propeller domain, leads to change in the substrate specificity of eryngase, an enzyme from Pleurotus eryngii and a member of the S9 family of prolyl oligopeptidases. The activity of eryngase for L-Phe-p-nitroanilide was maintained following hydrogen peroxide treatment but was dramatically reduced for other p-nitroanilide substrates. MALDI-TOF MS analysis using tryptic peptides of eryngase indicated that the change in substrate specificity was triggered by oxidizing Met203 to methionine sulfoxide. In addition, mutations of Met203 to smaller residues provided specificities similar to those observed following oxidation of the wild-type enzyme. Substitution of Met203 with Phe significantly decreased activity, indicating that Met203 may be involved in substrate gating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.