Abstract

The oxidation of methionine residues in proteins can inhibit the self-assembly of proteins to form amyloid fibrils. For human apolipoprotein (apo) C-II the oxidation of methionine at position 60 inhibits fibril formation by the mature protein and by the core peptides apoC-II(56-76) and apoC-II(60-70). To investigate the molecular nature of these effects, we carried out fully solvated, all-atom molecular dynamics simulations of the structural changes in apoC-II(56-76) associated with substitutions of oxidized methionine (Met ox) at position 60. The results with apoC-II(56-76) (Met ox) showed less flexibility in structure, leading to a perturbation of the hydrophobic core. Valine substitution at position 60 showed an increased tendency to explore a wide range of conformational space, whereas the behavior of the Gln substitution mutant was similar to the wild-type peptide. These simulations are consistent with kinetic measurements which showed that a Met60Gln substitution within apoC-II(56-76) had little effect on the rate of fibril formation whereas substitution of Met ox or Val at position 60 lead to significant inhibition of peptide fibril formation. The effects of amino acid modification and substitutions on the kinetics of peptide fibril formation differ from the effects observed with full-length apoC-II inferring that additional mechanisms are involved in fibril formation by mature apoC-II.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call