Abstract

Recent studies have reported divergent results in rodent cancer assays using fume condensates from a variety of asphalt products. This paper presents results of a study investigating the role of oxidation, or extent of oxidation, on these findings. Five straight run asphalts, made from widely used crude oils, were used as inputs to both production scale and laboratory oxidation units and processed to a range of softening points used in common roofing products. For each of the five asphalts studied, the oxidation reaction significantly decreased measures of polycyclic aromatic compounds (PACs) that have been linked, previously and in analyses included in this study, to tumor induction in rodent bioassays. Mutagenicity index determined by the modified Ames assay was reduced between 41% and 50% from the input asphalt to the final oxidized product. A fluorescence method tuned to a subset of PAC compounds that have been associated with carcinogenic behavior in mouse bioassays was reduced between 39% and 71%. The decrease was largest in the first quarter of the oxidation reaction. These findings indicate that oxidation, by itself, was not a likely factor in the tumor induction seen in the previous studies. Rather, other factors such as the conditions of fume generation and crude source (coupled with possible differences in distillation endpoints) were more likely to have determined the outcomes. Analyses of previously published data, presented in this paper, suggest that the modified Ames and fluorescence assays are valuable screening tools for use in future health-related asphalt research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call