Abstract

Harvest residues were formed into windrows to prevent nitrogen (N) losses through volatilisation and erosion that occurred following pile and burn operations in hoop pine (Araucaria cunninghamii Aiton ex A. Cunn.) plantations of subtropical Australia. We selected second rotation (2R) hoop pine sites where the windrows (10-15 m apart) had been formed 1, 2 and 3 years prior to sampling in order to examine soil carbon (C) and N in the areas beneath and between the windrows. Materials and Methods: We used conventional chemical methods, anaerobic incubation assay, 13C and 15N natural abundance analyses and, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Results: Percent mineralisable N (PCMN) was the only parameter in the underneath windrow position at the Year 1 site that did not show a significant difference to the rest of the positions along the transect. However, positions adjacent to windrows did have significantly greater PCMN at the Year 1 site than other positions along the transect. PCMN, total N and total C were significantly greater underneath the windrows at the Year 3 site, whilst d13C was significantly more negative in the underneath windrow positions. Discussion: PCMN was the most sensitive biological indicator of the changes occurring in the soil due to decomposition of the windrows, with the beneath-windrow position having a significantly higher PCMN than the inter-windrow position (p<0.001) at the Year 3 site. Isotopic natural abundance for both 13C and 15N was able to detect the influx of labile materials from new residues. Solid-state 13C NMR was able to detect inputs of labile C from the windrows at the Year 1 site, whilst the increase in aromatic C at the Year 3 site was indicative of the more advanced stages of windrow decomposition. Conclusions: Decomposition of windrowed residues had a beneficial effect on soil N and C pools. However, the effect remained localised after 3 years, indicating that trees needed to be planted close to the windrows to gain any benefit from residue decomposition Recommendations and Perspectives: The use of windrows allows a clear planting area and provides a good barrier against soil erosion. However, trees can only gain access to the nutrients from the decomposing residues if they are planted close to the windrows. Limiting the width of the cleared areas to allow for only 2 planting rows will give the maximum benefit to the developing trees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.