Abstract
Transcription factors encoded by HOX genes are vital in the determination of cell fate and identity during embryonic development. In certain malignancies, HOX genes also behave as oncogenes. The present study demonstrated suppression of the invasive tendency of glioblastoma multiforme U-118 and U-138 cells by the introduction of the antisense fragments of HOXA6 and B13 genes using electroporation. The invasion index indicated 79 and 72% reductions in the invasive ability of antisense HOXA6 and B13, respectively. No significant differences in the invasive index of the parental and mock cells of each HOX gene were observed (invasive index, 0.75-0.91; P=0.05). A reduction in invasion tendency was also observed following betulinic acid (BA) treatment: The results from the matrigel assay analysis clearly demonstrated a significant inhibition in the invasive behaviour of U-118 and U-138 cell lines from day 15 following BA treatment, with a maximum effect on day 30. The invasion index demonstrated 62 and 65% reductions in invasion ability in the U-118 and U-138 cell lines, respectively. The suppression of HOXC6 and B13 expression by the introduction of the corresponding antisense fragments in addition to BA reduced invasion tendency in U-118 and U-138 cell lines. The mechanism underlying the association between the HOX gene and invasive behavior in glioma cells is yet to be understood. However, the anti-invasive behavior of BA may aid understanding of the mechanism in future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.