Abstract

A soluble pyridine nucleotide transhydrogenase (UdhA) has been used to increase the productivity and yield of PHB in vivo. By inducing a high level of UdhA, which can transfer reducing equivalents between NAD and NADP, we have increased NADPH availability, resulting in high yield and productivity of PHB in Escherichia coli. Coexpression of the phb operon from Alcaligenes eutrophus H16 and the native udhA from E. coli from high copy plasmids resulted in an increase in PHB yield from 49 to 66% g of PHB per gram of total cell dry weight and an increase in final concentration from 3.52 to 6.42 g/L; the PHB concentration of the udhA carrying strain is almost twice that of the control strain expressing only the phb operon. The results of this study demonstrate the effectiveness of cofactor manipulation and its application as a tool in metabolic engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call