Abstract

Experiments are conducted to study the heat transfer and pressure drop characteristics in a triangular duct cooled by an array of tangential jets, simulating the leading-edge cooling circuit of a turbine blade. Coolant ejected from a high-pressure plenum through an array of orifices is aimed at the leading-edge apex and exits from the radial outlets. Three different outflow orientations, namely coincident with the entry flow, opposed to the entry flow, and both, are tested for various Reynolds numbers 12600⩽Re⩽42000. A transient liquid crystal technique is used to measure the detailed heat transfer coefficients on two walls forming the leading-edge apex. Flow rate across each jet hole and the crossflow development, which are closely related to the local heat transfer characteristics, are also measured. Results show that increasing Re increases the heat transfer on both walls. The outflow orientation affects significantly the local heat transfer characteristics through influencing the jet flow together with the crossflow in the triangular duct. The triangular duct with two openings is recommended since it has the highest wall-averaged heat transfer and the moderate loss coefficient among the three outflow orientations investigated. Correlations for wall-averaged Nusselt number and loss coefficient in the triangular duct have been developed by considering the Reynolds number for three different outflow orientations. [S0022-1481(00)01204-4]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.