Abstract

To further elucidate differences in ion transport properties between jejunal crypt and villus cells, we compared the responses of purified cell suspensions to hypotonic stress using electronic cell sizing to evaluate volume changes and 86Rb and 36Cl efflux. After hypotonic swelling, villus enterocytes undergo a regulatory volume decrease (RVD) due to the loss of K+ and Cl- through volume-activated conductances. After 0.6x isotonic challenge in Na(+)-free medium, crypt cells exhibited only partial RVD, with t1/2 congruent to 15 min. The addition of a cation ionophore, gramicidin (0.25 microM), to hypotonically swollen crypt cells caused an accelerated RVD, which was complete with t1/2 congruent to 5 min. Crypt epithelial cells showed no volume-activated 86Rb efflux, but villus enterocytes had an increased rate of 86Rb efflux after hypotonic dilution (P less than 0.001). Gramicidin added to hypotonically diluted crypt cells greatly increased the rate of 86Rb efflux compared with controls. Both villus (30 s; P less than 0.005) and crypt (2 min; P less than 0.001) cells exhibited volume-activated 36Cl efflux in absence of gramicidin. Cl- channel blockers anthracene-9-carboxylate (9-AC, 300 microM) and indanyloxyacetic acid (IAA-94, 100 microM) prevented crypt RVD (P less than 0.001) in the presence of gramicidin. Ouabain (P less than 0.001) or K(+)-free Na(+)-containing medium, but not Ba2+ (5 mM) or quinine (100 microM), prevented crypt partial RVD. We conclude that crypt cells lack volume-activated K+ conductance. The RVD exhibited by crypt cells, although partial, was due to Cl- loss through a volume-activated Cl- conductance and Na+ loss via Na(+)-K(+)-ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call