Abstract
Osmolytes found endogenously in almost all living beings play an important role in regulating cell volume under harsh environment. Here, to address the longstanding questions about the underlying mechanism of osmolyte effects, we use femtosecond mid-IR pump-probe spectroscopy with two different IR probes that are the OD stretching mode of HDO and the azido stretching mode of azido-derivatized poly(ethylene glycol) dimethyl ether (PEGDME). Our experimental results show that protecting osmolytes bind strongly with water molecules and dehydrate polymer surface, which results in promoting intramolecular interactions of the polymer. By contrast, urea behaves like water molecules without significantly disrupting water H-bonding network and favors extended and random-coil segments of the polymer chain by directly participating in solvation of the polymer. Our findings highlight the importance of direct interaction between urea and macromolecule, while protecting osmolytes indirectly affect the macromolecule through enhancing the water-osmolyte interaction in a crowded environment, which is the case that is often encountered in real biological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.