Abstract

The influence of osmolytes, including dimethysulfoxide, glycine, proline and sucrose, on the refolding and reactivation courses of guanidine-denatured creatine kinase was studied by fluorescence emission spectra, circular dichroism spectra, recovery of enzymatic activity and aggregation. The results showed that low concentrations of dimethysulfoxide (<20%), glycine (<0.5 M), proline (<1 M) and sucrose (<0.75 M) improved the refolding yields of creatine kinase, but high osmolyte concentrations decreased its recovery. Sucrose favored the secondary structural formation of creatine kinase. Proline and sucrose facilitated refolding of the protein to its original conformation, while dimethysulfoxide and proline accelerated the hydrophobic collapse of creatine kinase to a packed protein. During the aggregation of creatine kinase, dimethysulfoxide and sucrose inhibited aggregation of creatine kinase, as did proline, but glycine was unable to inhibit aggregation. These systematic observations further support the suggestion that osmolytes, including low concentrations of dimethysulfoxide, proline or sucrose, possibly play a chaperone role in the refolding of creatine kinase. The results also indicate that sucrose and free amino acids are not only energy substrates and organic components in vivo, but also help correct protein folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.