Abstract

Passive scalar (temperature) mixing with different orifice geometries is considered at low Reynolds number. The kinetic energy dissipation rate shows that the three jets achieve a self-similar state quickly compared to a nozzle jet. Scalar dissipation evolves faster to the self-preserving state than kinetic energy dissipation and the asymptotic value of the normalized kinetic and scalar dissipation on the jet centerline can be predicted. Taylor and Corrsin microscales start evolving linearly with x/D as early as x/D = 10. Normalized spectra using these length scales continue to evolve for the circular jet and collapse faster for the six-lobe jet, when Rλ reach a constant value. The scaling factor and range for the velocity and the scalar suggest that the scaling region “similar to the inertial range” reaches equilibrium before small scales reach complete equilibrium. The use of multilobe jets promotes the development toward a complete self-preserving state for the scalar field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.