Abstract

The adhesion force and contact angle of gold-capped silica Janus particles and plain silica particles at an air-water interface are studied via colloidal atomic force microscopy. Particles are attached to cantilevers at various orientations, and wetting properties of the gold surface are varied through modification with dodecanethiol. Thiol modification increases the hydrophobicity of the gold surface, thereby increasing the difference between the contact angles of the gold hemisphere and the silica hemisphere and, thus, increasing the degree of amphiphilicity of the Janus particle. Subsequently, the colloidal probe is pushed into a stationary bubble from the water phase followed by retraction back into the water phase. Adhesion force is found to be higher for Janus particles than isotropic silica particles, regardless of orientation of the anisotropic hemisphere. Particles with their polar half oriented toward the water and apolar half facing the air show an increase in adhesion force and contact angle as the degree of amphiphilicity of the particles increases. For particles of the reverse orientation, no significant difference is observed as wetting properties change. Both adhesion force and contact angle display an inverse relationship with a cap angle for particles with a higher degree of amphiphilicity. These results are of importance for using Janus particles to stabilize interfaces as well as for understanding the equilibrium height of Janus particles at the interface, which will impact capillary interactions and thus self-assembly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.