Abstract

Coastal embankments often collapse due to the tremendous destructive energy of an overtopping tsunami flow due to a deep scour by nappe flow. Hence, to clarify the nappe flow formation condition due to the overtopping, a series of tests were carried out within a laboratory flume with immobile settings by lowering the downstream surface angle of an embankment model while keeping the upstream surface slope constant (1:1) with five non-dimensional overtopping depths and six different crest conditions. The conditions imposed on the embankment crest in the flow direction were without vegetation; horizontal crest, (−)4% descending crest slope, (+)4% ascending crest slope, and adding vegetation model with three different densities across the horizontal crest to improve resistance to the flow. The increased resistance provided by the vegetation models were categorized based on the spacing ratio between cylinders to diameter: sparse, intermediate, and dense. Increased vegetation density above the crest results in a significant reduction of flow energy by approximately 30–50% at the downstream brink edge and 40–60% at the downstream plunge basin. In contrast, the maximum energy reduction was found to be by the dense vegetation model. Additionally, owing to the steep slope of the water surface profile and the increasing vegetation density, the impinging jet’s impact point moved closer to the toe of an embankment. This implies that vegetation covers a smaller area while increasing density to mitigate the destructive intensity of flood/tsunami movement. Meanwhile, the descending crest scenario results in a faster nappe flow formation. In contrast, the ascending crest scenario delays the nappe formation while reducing the downstream slope angle. It maintains the sub-critical flow at the crest, except near the downstream brink edge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call