Abstract
AbstractThe results of flame retardance and thermal stability of a reactively modified organo‐phosphorus diglycidylether of bisphenol‐A and an organo‐phosphorus tetraglycidyl diaminodiphenylmethane are reported here. The organo‐phosphorus epoxy resins were synthesized by the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and diglycidyl ether of bisphenol‐A and tetraglycidyl diaminodiphenylmethane, respectively, and then cured with a mixture of 3,5‐diethyltoluene‐2,4‐diamine and 3,5‐diethyltoluene‐2,6‐diamine. In addition to this, between 5 and 7.5% of organically modified polymeric layered silicate nano‐clay was also added to neat epoxy resin or to the phosphorus‐modified epoxy resin to investigate any synergies, or otherwise, a combination of clay and phosphorus on the flame, degradation, and thermal properties are also reported. The reaction kinetics of phosphorus‐modified and epoxy cure were studied by FTIR, 1H‐NMR, and DSC. Thermal properties and morphology of the final product were analyzed by thermogravimetric analysis, dynamic mechanical thermal analysis, X‐ray diffraction, and cone calorimetry. Improvement in flame retardance by cone calorimetry was demonstrated by the addition of only 3% phosphorus or 7.5% clay into the epoxy compared with unmodified epoxy resins, whereas no evidence of synergy for a phosphorus and clay combination was found. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1233–1253, 2004
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.