Abstract

The paper presents an experimental study aimed at investigating the mechanism responsible for Bisphenol A adsorption on natural cork, and the role played on process kinetics by the organic matter released from the cork. Obtained data show that natural cork has a good affinity toward Bisphenol A, with removal efficiency being as high as 75% in less than 24 h. The adsorption process is characterized by a fast-initial rate which tends to reduce progressively, and follows a pseudo second order model equation. Statistical physics analysis allows for obtaining a molecular description of the adsorption, which is shown to take place through a single anchorage point, perpendicularly to the adsorbent surface. Nuclear magnetic resonance spectroscopy and fluorescence analysis reveal that the colloidal organic matter released from the cork interacts with Bisphenol A; it also plays a relevant role in the slowing down of the adsorption rate, as it competes with cork adsorption sites for Bisphenol A. Organic matter is found to be highly heterogenous, presenting at the same time carbohydrates, aromatic and aliphatic domains. Such moieties interact stably with the contaminant in the solution probably due the establishment of dispersive forces (e.g. π-stacking) which sequestrate Bisphenol A into the inner hydrophobic core of the organic matter three-dimensional structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.