Abstract
AbstractWhey is a high strength waste product of cheese manufacture. Anaerobic digestion of cheese allows pollution potential reduction and simultaneously energy production. Organic loading rate (OLR) is an important operating variable for anaerobic digestion (AD) process related to system stability, waste treatment capacity and biogas production. The actual OLR depends on the types of wastes (i.e., content of chemical oxygen demand [COD]) fed into a digester. In this paper, the effect of OLR on the AD process of the raw cheese whey in a semi-continuous up-flow system is studied experimentally and with numerical simulations using a simple dynamical model calibrated with experimental data. The digester operation was performed for 90 days, doubling the OLR every 30 days, from OLR of 2.5–10 gCOD L−1 d−1. Experimental results show that the increase in OLR favors the production of biogas. However, the proportion of methane may decrease. The highest methane yield and the most considerable substrate degradation were obtained at OLR of 5 gCOD L−1 d−1 and 10 gCOD L−1 d−1, respectively. The proposed mathematical model is used to describe the dynamic behavior of key variables as COD, volatile fatty acids (VFA) and methane production. A good fit between the variables estimated by the mathematical model and experimental data was obtained, reaching determination coefficients (R2) greater than 0.8. Therefore, this model might be beneficial in predicting the maximum methane production rate and the maximum OLR that could be used without risking the AD process stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Chemical Reactor Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.