Abstract

The effect of ordering on susceptibility to hydrogen embrittlement of a Ni-base superalloy (alloy C-276) has been investigated by means of tensile tests in air and with hydrogen-charging in 1N-H2SO4 solution. The annealed specimen has exhibited intergranular fracture by hydrogen-charging, resulting in a marked reduction in tensile elongation and ultimate tensile strength. The mode of fracture was changed by aging at 773 K, and the transgranular fracture has been found to be dominant in the aged specimens. The susceptibility to hydrogen embrittlement, as identified by the test method used in this study, seems to be reduced by short-term aging, though it turns out to be increased again by further aging. The fractured boundaries have been characterized using electron channeling pattern (ECP) analysis of adjacent grains. It is found that the misorientation of grain boundaries plays an important role in fracture, and ∑3 boundaries, twin boundaries in a face-centered cubic (fcc) lattice, are most likely to fracture in the aged specimens. Transmission electron microscopy (TEM) observation has shown that a short-range ordering reaction from a disordered fcc lattice into an ordered Ni2(Cr, Mo) (Pt2Mo type) super-lattice takes place by aging, and hence, superdislocation triplets with APB (antiphase boundary) become predominant when deformed. It is also seen that in the aged specimens, deformation twinning is another mode of deformation, and this leads to the transgranular fracture at twin boundaries by hydrogen-charging. These results suggest that a change in the mode of deformation after aging plays a major role in fracture due to hydrogen embrittlement as a consequence of the heterogeneous interaction between slip dislocations and twin boundaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call