Abstract
Radiation-induced helium bubbles are detrimental to the mechanical properties of metals, usually causing severe hardening and embrittlement. Hexagonal close-packed (HCP) α-Zr alloys are one of the primary structural materials for nuclear applications, however, the effect of helium bubbles on their deformation and fracture behaviors still remains unexplored. Here, we found that ordered helium bubbles prefer to align along the basal plane in HCP α-Zr. Micro-scale in situ tensile tests revealed that helium bubbles less than 8 nm in size can increase the critical resolved shear stress of the prismatic slip. However, once the helium bubbles are larger than 8 nm, a bubble-softening effect happens due to a decrease in number density of helium bubbles and an increase in porosity. Once the Schmid factor of basal slip is considerably higher than prismatic slip, bubble coalescence along the basal plane becomes the major failure mode in helium-irradiated α-Zr.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.