Abstract

BO6 oxygen octahedral was considered as the key part in ABO3 perovskite structure, and the electro-optical, elastic and thermodynamic properties of potassium tantalate niobate (KTa0.5Nb0.5O3, abbreviated as KTN) were closely depended on the B-site Ta/Nb ratio and ordering. The effect of [100]NT, [110]NT, and [111]NT B-site cations ordering (N means a pure Nb layer parallel to (h, k, l), T means a pure Ta layer parallel to (h, k, l)) on structure, elastic properties and Debye temperatures properties of KTN were investigated based on density functional theory (DFT). KTN with [111]NT B-site ordering presents an cubic phase structure with excellent stability from the view of lattice properties. The elastic properties include elastic stiffness coefficients C ij , bulk modulus B, shear modulus G, Young’s modulus E and Poisson’ ratio ν were calculated. The elastic stiffness coefficients C 11 of KTN with B-site ordering have approached to maximum 485.506 GPa, indicating that KTN materials have better deformation ability along x axis compared with other perovskite materials. The calculated results of bulk modulus B and the shear modulus G show that KTN with [100]NT B-site ordering has stronger ability to resist fracture and plastic deformation. And the criteria B/G <1.75 suggests that KTN should be classified as a brittle material. The KTN with [100]NT B-site has excellent ductility properties compared with any other B-site arrangements. Debye temperatures of KTN with [100]NT, [110]NT, [111]NT are about 650 K, and KTN with [100]NT B-site has best thermodynamic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.