Abstract

The detailed mechanism of metal-organic-framework (MOF)-based separation materials is still obscure, which obviously hinders their actual application. To address this problem, a trinuclear Cu-cluster-based MOF with a minimum metal-active plane was synthesized for the study of the very challenging C2H2/C2H4 and C2H2/CO2 separations. Via dispersion-corrected density functional theory calculations, it is indicated that the difference of the adsorption energy accounts for the excellent separation properties toward C2H2/C2H4 and C2H2/CO2 mixtures, while the frontier molecular orbitals demonstrate that the adsorption-energy difference originates from the orbital-symmetry difference of gas molecules. All of these results provide not only deep insight into the separation mechanism but also an alternative strategy to prepare efficient adsorbents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call