Abstract
We investigate the effect of optomechanical coupling on the squeezed-spin states for a Bose-Einstein Condensate embedded within the lossless optomechanical cavity for the three special cases of initial states of cavity field, namely, a coherent state, a squeezed vacuum state and a squeezed state. We show that the radiation pressure or pondermotive force acting on the cavity end mirror plays a significant role in producing the atomic-squeezed states by producing squeezed states of the cavity field which is then transferred to the condensate. We further show that the maximum spin-squeezing along the x-direction is obtained in the presence of optomechanical coupling for the initial cavity field prepared in the amplitude squeezed state, whereas, squeezing along the y-direction reaches a maximum value in the absence of optomechanical coupling for the initial coherent cavity field. We also study the additional effect of nonlinear atomic interaction on spin-squeezing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.