Abstract

In this paper, a comparison of the direct current (DC) and radiofrequency (RF) operating modes in glow discharge optical emission spectrometry (GD-OES) is carried out using the same discharge chamber, based on the Marcus design, powering alternatively with DC or RF energy. The effect of discharge pressure, the DC bias voltages and the delivered power divided by the DC-bias voltage on the sputtering rates, emission intensities and emission yields achieved for conducting materials was investigated in order to characterize both discharge types. Our results show that the effect of plasma variables on sputtering rates and emission yields using a DC-GD based on the chamber described by Marcus, can be considered to follow trends similar to those of the well-known DC-Grimm source. However, if the effect of plasma variables are compared for a DC-GD and a RF-GD, both generated by the same source as designed by Marcus, the behaviour of the DC and RF operations of the source proved to have some differences. Thus, at a fixed delivered power, the sputtering rate in the DC-GD decreases noticeably with pressure while the reverse effect is observed in the RF-GD. Moreover, under selected operating conditions, using the tin emission line (Sn I 380.102 nm), lower sputtering rates and higher emission yields were observed for the RF-GD than for the DC-GD source. Extension of known theoretical expressions and concepts from analytical DC-GD to RF-GD-OES work appears rather involved and is not yet possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call