Abstract

This study investigates the effect of heat treatment temperature on the properties of charcoal composite pellets used for the reduction of ferroalloys. The heavy fraction of biooil was used as a binder for the charcoal ore pellet preparation. The effect of heat treatment temperature on the pellet shrinkage was related to the degree of reduction which varied with feedstock and ore composition. The results showed that the size and shape of the charcoal pellets were not affected by the biooil devolatilization. Manganese charcoal pellets showed higher electrical resistance during pyrolysis, whereas the structure, composition and electrical resistance of silica composite pellets remained unaffected by heat treatment temperatures < 1650 °C. However, the secondary heat treatment decreased the CO2 gasification reactivity and electrical resistivity of charcoal composite pellets. In addition, the findings of this work demonstrate the potential for using biooil as a binder for the charcoal composite pellets used in ferroalloy industries. The composite pellets are suitable to pre-reduce the manganese ore in the low temperature zones of an industrial furnace, and the charcoal pellets can be used as an alternative bed material. However, the high CO2 reactivity may create challenges during the direct replacement of metallurgical coke with the bio-reductants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call