Abstract

Gas explosion is a common serious accident in underground coal mines and industrial production processes. Porous media, due to its special cellular structure, has a significant effect on stopping the propagation of pressure and flame, which can effectively reduce the explosion hazard. In this study, the explosion suppression effect of Fe-Ni and Cu foams with different pore sizes (20 and 40 holes pores per inch (ppi)) was experimentally investigated and comparatively analyzed at opening blockage ratios (OBR) equal to 0.36, 0.64 and 0.84, respectively. The results demonstrate that Fe-Ni foam with 20ppi quenches the flame only under the OBR of 0.84, which indicates that the larger the OBR is, the better the explosion suppression effect is. However, under the OBR of 0.64, the porous media achieve an enhanced quenching efficiency and the shortest quenching time. In addition, when the vent area is relatively large, the obstacle effect of porous media is stronger than its pressure absorption capacity, thus leading to an increased pressure in the explosion area. The lowest peak overpressure attenuation rate, − 25.9%, is observed for 40ppi Fe-Ni foam under the OBR of 0.36. In general, the OBR is positively correlated with the depressurization capacity. Among all the cases used in this study, the 20ppi Cu foam boasts the highest upstream and downstream peak overpressure attenuation rates under three OBRs, 0.86%, and 6.33%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.