Abstract

The effect of the ethylene receptor competitor 1-methylcyclopropene (1-MCP) and the legally approved disinfectant chlorine dioxide (ClO2) on preservation of the green walnut fruit during storage was investigated. Green Chinese walnut fruit cv. Xilin No.2 was harvested on commercial maturity and stored at 0-1°C after the fruit was treated by water (control), 80mgL(-1)ClO2 (ClO2), 0.5μL L(-1)1-MCP (1-MCP), or combination treatment of 80mgL(-1) ClO2 with either 0.1μL L(-1) 1-MCP (0.1 1-MCP+ ClO2) or 0.5μL L(-1) 1-MCP (0.5 1-MCP+ ClO2). During storage, respiration, ethylene production, phenolics content, antioxidative activity, weight changes, decay of the fruit and kernel traits of acid value, peroxide value,free fatty were measured. All treatments decreased postharvest respiration intensity in different degrees and inhibited ethylene production peak. ClO2 increased the total phenol and flavonoid content of the green fruit compared with other treatments and the control (P < 0.05), but not did the total antioxidant activity for this treatment. After 42-day storage, ClO2 remained higher fresh weight and lower decay index than control, while 1-MCP increased the fruit decay index. Final acid values of kernel from ClO2, control and 0.1 1-MCP+ ClO2 were not different from their initial values, which from 0.5 1-MCP increased. Final peroxide value for kernel from ClO2 showed no change during storage but increased at least 1.0-fold for other treatments. ClO2 preserved 99.9% of initial free fatty acid, similar to that for the control (99.8%), whereas 0.5 1-MCP preserved only 95.7%. ClO2 is of potential in decay retardation and kernel traits maintenance of green walnut fruit, whereas the 1-MCP has a negative effect for decay control on walnut.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.