Abstract

ABSTRACTThe aim of this study was to prepare poly (ethylene‐co‐vinyl acetate) (EVA)/ low density polyethylene (LDPE)/magnesium hydroxide (MH) composites applicable in cable industry with required flame retardancy. For this reason, two types of organo‐modified montmorillonites (OMMT) with different surface polarites (Cloisite 15A and Cloisite 30B) at various concentrations, and also combination of these two OMMTs with overall loadings of 2 wt % and 5 wt % were used. The samples were compounded using a twin screw extruder with total (MH + OMMT) feeding of 55 wt % and 60 wt %. Limiting oxygen index (LOI) of the samples containing 2 wt % of OMMTs increased about 16% and dripping was suppressed according to vertical burning test (UL‐94V). Thermogravimetric results of EVA/LDPE/MH samples containing OMMT showed that the beginning of second step degradation was shifted about 50°C to higher temperatures. The composite tensile strength results showed enhancement by incorporating some amount of nanoclays with EVA/LDPE/MH composites. Scanning electron microscopy images confirmed that MH particles had better wetting by EVA matrix in presence of nanoclays. Oxidative induction time of the EVA/LDPE/MH/OMMT nanocomposites was 140 min, which was more than that of the samples without OMMT (20 min). Employing the equal weight ratios of the two OMMTs demonstrated a synergistic effect on flame retardancy of the samples according to the both tests results (LOI, UL‐94V). X‐ray diffraction analysis of the samples confirmed the intercalation/semiexfoliation structure of nanosilicate layers in the bulk of EVA/LDPE matrix. This led to longer elongation at break and thermal stability of Cloisite 15A based nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40452.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call