Abstract

BackgroundElevated resting heart rate (HR) has emerged as a new risk factor for all-cause and cardiovascular mortality. The effect of marine-derived omega-3 long-chain polyunsaturated fatty acid (n−3 LCPUFAs) supplementation on HR was investigated as an outcome in many clinical trials. The present study was to provide an updated meta-analysis on the HR-slowing effect of n−3 LCPUFAs, and to differentiate the chronotropic effect between eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).MethodsPubMed and Cochrane databases were searched for relevant articles examining the effects of n−3 PUFAs on HR through May 2017. A random-effects model was used to generate the pooled effect sizes and 95% confidence intervals (CIs). The pooled effect sizes were presented as weighted mean differences (WMDs).ResultsA total of 51 randomized controlled trials (RCTs) with approximately 3000 participants were included in this meta-analysis. Compared to placebo, n−3 PUFA supplementation mildly but significantly reduced HR (−2.23 bpm; 95% CI: −3.07, −1.40 bpm). Moderate evidence of heterogeneity was observed among included trials (I2 = 49.1%, P heterogeneity < 0.001). When DHA and EPA were separately administered, modest HR reduction was observed in trials that supplemented with DHA (−2.47 bpm; 95% CI: −3.47, −1.46 bpm), but not in trials with EPA.ConclusionsThe present meta-analysis provides strong clinical evidence demonstrating the effect of heart rate reduction by n−3 LCPUFA supplementation. When DHA or EPA administered alone, heart rate was slowed by DHA rather than by EPA.

Highlights

  • Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users.The potential cardioprotective effects of marine-derived omega-3 long-chain polyunsaturated fatty acids (n−3 LCPUFAs) and fish intake have been investigated in numerous studies [1, 2]

  • Trial characteristics participants with at least one chronic condition, such as coronary artery disease, renal failure, hypertension, hyperlipidemia, type 2 diabetes mellitus, frequent premature ventricular contraction, epilepsy, psoriatic arthritis, severely accident injured, and age-related cognitive decline; 19 trials were conducted exclusively in men, 2 in women, and the remaining included both sexes; the duration of trials ranged from 2 weeks to 1 year; the mean age of participants ranged from 22.45 to 70 years; heart rate (HR) of the participants in almost all trials was within the normal range (i.e., 60–100 bpm)

  • By pooling the results from 51 randomized controlled trials (RCTs), our study provided the latest evidence that n−3 LCPUFA supplementation reduced HR compared to placebo (−2.23 bpm; 95% confidence intervals (CIs): −3.07, −1.40 bpm); Second, by pooling results from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) administration trials separately, our study demonstrated that DHA rather than EPA reduced HR compared to placebo (−2.47 bpm with DHA; 95% CI: −3.47, −1.46 bpm), thereby more ascribable to the negative chronotropic effect

Read more

Summary

Introduction

Any agent with HR-reducing effect and relatively no side effect may serve as a valuable candidate in SCD prevention To this end, the effect of n−3 LCPUFA supplementation on HR has been investigated in a large number of randomized controlled trials (RCTs) [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63], with most of the RCTs showing HR reduction compared to placebo. When DHA or EPA administered alone, heart rate was slowed by DHA rather than by EPA

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call