Abstract

A series of low-bandgap donor–acceptor (D–A) copolymers, P(C-T-QP), P(C-BT-QP), P(C-TT-QP), and P(C-TT-QP-Zn), using 2,7-carbazole (C) as an electron-rich unit and quinoxalino[2,3-b′]porphyrins (QP) or quinoxalino[2,3-b′]porphyrinatozinc(QP-Zn) as an electron-deficient unit with different length of oligothiophene π-bridges, were designed and synthesized via a Pd-catalyzed Stille-coupling method. The π-bridge between the C donor unit and the QP acceptor unit is thiophene (T) in P(C-T-QP), bithiophene (BT) in P(C-BT-QP), and terthiophene (TT) in P(C-TT-QP) or P(C-TT-QP-Zn). These copolymers possess good solubility, high thermal stability, broad absorption, and low bandgap ranging from 1.66 to 1.73 eV. The influence of the π-bridge and the central Zn ion on the electronic and photovoltaic properties was investigated and discussed in detail. It was found that the π-bridge played an important role in tuning the effective conjugation length and therefore significantly affected the molecular architecture and opt...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call