Abstract

Xylan is one of the most abundant carbohydrates on Earth. Complete degradation of xylan is achieved by the collaborative action of endo-β-1,4-xylanases and β-d-xylosidases and a number of accessories enzymes. In filamentous fungi, the xylanolytic system is controlled through induction and repression. However, the exact mechanism remains unclear. Substrates containing xylan promote the induction of xylanases, which release xylooligosaccharides. These, in turn, induce expression of xylanase-encoding genes. Here, we aimed to determine which xylan degradation products acted as inducers, and whether the size of the released oligomer correlated with its induction strength. To this end, we compared xylanase production by different inducers, such as sophorose, lactose, cellooligosaccharides, and xylooligosaccharides in Fusarium oxysporum f. sp. lycopersici. Results indicate that xylooligosaccharides are more effective than other substrates at inducing endoxylanase and β-xylosidases. Moreover, we report a correlation between the degree of xylooligosaccharide polymerization and induction efficiency of each enzyme. Specifically, xylotetraose is the best inducer of endoxylanase, xylohexaose of extracellular β-xylosidase, and xylobiose of cell-bound β-xylosidase.

Highlights

  • Xylan forms part of hemicellulose and constitutes nearly 1/3 of plant biomass, making it one of the most abundant carbohydrates on the planet [1]

  • Xylose and xylan [6,40], as well as simple sugars derived from lignocellulosic substrates are effective xylanase inducers

  • We evaluated the effect of different xylooligosaccharides and cellooligosaccharides on induction of xylanolytic enzymes by

Read more

Summary

Introduction

Xylan forms part of hemicellulose and constitutes nearly 1/3 of plant biomass, making it one of the most abundant carbohydrates on the planet [1]. Hemicellulose, cellulose, and lignin represent the three main components of the plant cell wall. They are bound to each other by covalent and non-covalent bonds, which provide plants with cell wall integrity and fiber cohesion [2]. Xylan is linked to other polysaccharides through hydrogen bonds and to ferulic and coumaric acid units of lignin through covalent linkage of arabinofuranosyl side chains [3]. It is located mainly in secondary cell walls [4] of hardwoods, softwoods, and annual plants [5]. Depending on the plant species, its structure and composition can differ significantly [6]

Objectives
Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call