Abstract
Oligocrystalline Cu-Al-Mn shape memory foams with a pore size of 0.8–1.1 mm and a porosity of ∼70% were prepared by the silica-gel beads infiltration method, subjected to long-time and cyclic heat treatments. The effect of grain size and oligocrystallinity (ratio of grain size to strut node diameter) on the damping and pseudoelastic properties of the foams were investigated. The peak damping increases with oligocrystallinity because a higher oligocrystallinity favors the martensite accommodation and mobility of phase interfaces during martensitic transformation. The low-amplitude martensite damping first increases and then decreases with increasing oligocrystallinity, because the martensite plates grow wider in larger grains with lower grain constraints, leading to fewer interfaces and lower damping. The high-amplitude martensite damping increases linearly with increasing oligocrystallinity, despite the wider martensite plates and reduced interfaces, indicating that the mobility of martensite plates for higher displacements is more favored by reduced grain constraints. The maximum recovery strain increases linearly with oligocrystallinity and a high value of 5.53% was achieved after cyclic heat treatment for 16 times, corresponding to an oligocrystallinity of 7.88. The high recovery strain results from the reduced triple junctions and grain boundary area due to grain enlargement that lowers the grain constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.