Abstract

In this work, the effect of oil-displacing agent composition on oil/water interface stability of the asphaltene-rich alkali-surfactant-polymer (ASP) flooding-produced water was systematically investigated, especially from the perspective of the interaction between oil displacement agents and asphaltene at the oil/water interface. Primarily, adsorption behavior of the artificial and natural interfacial substances (oil displacement surfactant and asphaltenes) on the oil/water interface was investigated by molecular dynamics simulation. The oil displacement surfactant and asphaltenes formed a cross-linked and compact interfacial film structure, which significantly enhanced the interface stability; the more the oil displacement surfactants adsorbed on the interface, the more stable is the cross-linked structure formed between them and asphaltenes. Then, the interfacial property variations that are originating from the interactions differences between oil displacement agents and asphaltenes were monitored via interfacial tension, zeta potential, and interfacial film rheology tests. Moreover, the effect of oil displacement agent concentrations on the interfacial film thinning and rupture kinetic behavior was further investigated. Finally, cream experiments were conducted to verify the effect of oil displacement agent composition on the oil/water separation efficiencies of asphaltene-rich ASP flooding-produced water. When 5% asphaltenes was added, the creaming oil removal rate reduced from 90.0 to 85.3% at 19 h. The interactions between asphaltenes and oil displacement agents immensely enhance the oil/water interfacial film strength and impede the oil/water separation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call