Abstract

Present work deals with the experimental investigation of tribological properties of GF-filled polymer composites considering three velocities, i.e. 0.5, 1 and 2.0 m/s and loads ranging from 15.7 N to 45.13 N keeping rest of the parameters constant. The test has been carried out for three materials, PTFE + 15% GF, PTFE + 25% GF and PTFE + 35% GF in wet (oil) and adding additive as graphite (5% wt) in oil. SAE 20W40 oil is used for the test. Friction and wear tests of PTFE composite against a counter surface of EN8 with surface finish of 0.56 μm are carried out at ambient conditions using pin-on-disc tribometre (TR-20), Ducom make, Bangalore. The results are tabulated and graphs are plotted. It has been found that load and wet conditions have significant effect on coefficient of friction and specific wear rate of the materials. Where as sliding velocity also plays little role in wear mechanism of the material. It is concluded from the experimental study that the specific wear rate in wet condition as well as by adding additives in lubricating oil with 5% (by wt.) has been declined. Also the specific wear rate decreases with normal load and sliding velocity. Wear of PTFE + GF composite decreases with increase in glass percentage. Microscopic analysis of pin and disc surface is made with optical microscope. The mathematical models has been developed by using regression analysis and found to be valid for the above tested parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.