Abstract
The tin selenide crystals with different proportions of Sn and Se were grown by a direct vapour-transport technique. The layer by layer growth of crystals from the vapour phase was promoted by screw dislocation mechanism. The powder X-ray diffraction (XRD) shows good crystallinity of grown compound. The XRD patterns of grown compounds are well-indexed to orthorhombic structure. In the off-stoichiometric compound, evidence of $$\hbox {SnSe}_{{2}}$$ secondary phase is observed due to excess of selenium. The morphological investigations were carried out using a Carl Zeiss optical microscope. The electron diffraction was also recorded from tiny flakes using a transmission electron microscope. The electrical resistivity both parallel and perpendicular to the c-axis was measured in the temperature range of 303–490 K and activation energy was also calculated using Arrhenius relation. The electrical study depicts the extrinsic semiconducting nature of grown compositions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.