Abstract
An effective method is proposed to prepare octa(aminophenyl) silsesquioxane (OAPS) functionalized graphene oxide (GO) reinforced polyimide (PI) composites with a low dielectric constant and ultrastrong mechanical properties. The amine-functionalized surface of OAPS-GO is a versatile starting platform for in situ polymerization, which promotes the uniform dispersion of OAPS-GO in the PI matrix. Compared with GO/PI composites, the strong interfacial interaction between OAPS-GO and the PI matrix through covalent bonds facilitates a load transfer from the PI matrix to the OAPS-GO. The OAPS-GO/PI composite film with 3.0 wt % OAPS-GO exhibited an 11.2-fold increase in tensile strength, and a 10.4-fold enhancement in tensile modulus compared with neat PI. The dielectric constant (D(k)) decreased with the increasing content of 2D porous OAPS-GO, and a D(k) value of 1.9 was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.