Abstract

Obesity has been associated to increase the risk of low back disorders. Previous musculoskeletal models simulating the effect of body weight on intervertebral joint loads have assumed identical body postures for obese and normal-weight individuals during a given physical activity. Our recent kinematic-measurement studies, however, indicate that obese individuals adapt different body postures (segmental orientations) than normal-weight ones when performing load-reaching activities. The present study, therefore, used a subject- and kinematics-specific musculoskeletal modeling approach to compare spinal loads of nine normal-weight and nine obese individuals each performing twelve static two-handed load-reaching activities at different hand heights, anterior distances, and asymmetry angles (total of 12 tasks × 18 subjects = 216 model simulations). Each model incorporated personalized muscle architectures, body mass distributions, and full-body kinematics for each subject and task. Results indicated that even when accounting for subject-specific body kinematics obese individuals experienced significantly larger (by ∼38% in average) L5-S1 compression (2305 ± 468 N versus 1674 ± 337 N) and shear (508 ± 111 N versus 705 ± 150 N) loads during all reaching activities (p < 0.05 for all hand positions). This average difference of ∼38% was similar to the results obtained from previous modeling investigations that neglected kinematics differences between the two weight groups. Moreover, there was no significant interaction effect between body weight and hand position on the spinal loads; indicating that the effect of body weight on L5-S1 loads was not dependent on the position of hands. Postural differences alone appear, hence, ineffective in compensating the greater spinal loads that obese people experience during reaching activities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call