Abstract

Structural and tribo-mechanical properties of Zr-O-N films deposited by reactive magnetron sputtering in a mixture of Ar (flow rate = 80 sccm), N2 (flow rate = 20 sccm) and O2 with a varying flow rate of 0 to 12 sccm were investigated. The films were characterized using scanning electron microscopy, energy dispersive x-ray analysis, atomic force microscopy, nanoindentation and wear tests. Oxygen content have a significant effect on the microstructure, wettability, tribo-mechanical properties of Zr-O-N films. The Zr-O-N films showed a dense structure with a mixture of zirconium oxides and nitrides and the preferred orientation changed from (111) ZrN to (200) ZrN with increasing O2 flow rate. The ZrON film, deposited at an oxygen flow rate of 10 sccm exhibited the highest contact angle (147°), the highest hardness (27.1 GPa), the lowest friction coefficient (0.36) and the lowest wear rate (5.8 × 10−7 mm3·Nm−1). The improvement in the tribological performance of the ZrON film deposited at 10 sccm is attributed to the improved hardness and increased H/E and H3/E2 ratios, due to the formation of a hard solid solution by the diffusion of oxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.