Abstract

We perform first-principles density functional calculations to study the electronic structure of Ni/HfO2 and Ni/SiO2 interfaces and the effect of O-vacancy (VO) defects on the Schottky barrier height and the effective work function. We generate two interface models in which Ni is placed on O-terminated HfO2 (100) and α-quartz (100) surfaces. As the concentration of VO defects at the interface increases, the p-type Schottky barrier height tends to increase in the Ni/HfO2 interface, due to the reduction of interface dipoles, whereas it is less affected in the Ni/SiO2 interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.