Abstract

O-polysaccharides of gram-negative bacteria are a highly variable component of the lipopolysaccharide molecules located at the cell wall surface and involved in microbial interaction with plant and animal cells. Activity of prophage genes often results in various non-stoichiometric modifications (methylation, acetylation, etc.) of glycans at bacterial cell surface. The share of modified O-polysaccharides increases during the stationary growth phase and results in increased hydrophobicity of microbial surface. Bacterial cells with different hydrophobicity showed difference in attachment to plant roots. Increased cell hydrophobicity index was found to result in a significant increase in the number of adsorbed microorganisms per unit root length. Thus, acetyl transferase and methyl transferase genes of viral origin may be indirectly involved in successful colonization of plant roots by rhizosphere bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.