Abstract

The effects of season and diet on LH, FSH and testosterone concentrations, testicular mass, sebaceous gland volume and male odour were examined in mature Australian cashmere goat bucks fed ad libitum with diets of low or high quality for 16 months under natural photoperiod at 29 degrees S, 153 degrees E (n = 6 per treatment). Each week plasma was sampled, the bucks were weighed, scored for male odour and assessed for testicular mass based on scrotal circumference. Each month a skin sample was taken from the occipital region for histological assessment of sebaceous gland volume. For each variable there was a clear circannual cycle that was significantly influenced by dietary treatment. In bucks fed the low-quality diet, the timing of seasonal changes in LH and testosterone concentration, sebaceous gland volume and odour score was similar, with a mid-autumn peak. In each case the high-quality diet advanced, extended the duration and increased the magnitude of the seasonal increase. FSH concentrations peaked in late spring (in bucks on the high-quality diet) or summer (in bucks on the low-quality diet), reaching a nadir in early winter. The high-quality diet significantly increased concentrations only in the last 2 months of the experiment (spring). There was no overall association between these variables and change in testicular mass; instead, it was strongly correlated with voluntary feed intake and change in body mass, themselves subject to seasonal variation with a winter or spring peak. The high-quality diet induced large increases in body mass and testicular mass during the first months of the experiment without influencing the seasonally low concentrations of FSH, LH and testosterone present at the time. These results demonstrate that the male, like the female, Australian cashmere goat, exhibits marked reproductive seasonality, and that nutrition is a powerful modulator of the seasonal cycle. They suggest that testosterone concentration, sebaceous gland volume and odour score are ultimately dependent upon LH secretion, which appears to be under strong seasonal (photoperiodic) control, with the effects of enhanced nutrition limited to periods when photoperiodic inhibition is waning. However, seasonal regulation of testicular mass, and therefore sperm production, appears to be primarily dependent on changes in voluntary feed intake and growth, with the seasonal cycle of testicular mass more a consequence of the seasonal appetite or growth cycle than of changing gonadotrophin concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call