Abstract

We linked a 2-dimensional water quality model of the Patuxent River with a spatially-explicit model of fish growth to simulate how changes in land use in the Patuxent River Basin would affect the growth rate potential (GRP) of Atlantic menhaden (Brevoortia tyrannus). Simulations of three land-use patterns that reflected current nutrient loadings, increased nutrient loadings, and decreased nutrient loadings were used to drive the water quality model. Changes in nutrient loadings caused changes in the timing and intensity of phytoplankton concentrations and the region of hypoxia increased during summer with increased nutrient loading. The spatial distribution of menhaden GRP was highly correlated with phytoplankton concentrations and localized in the middle on third of the Patuxent River. Menhaden growth rate was highest in early June and late summer. During June, menhaden GRP (and phytoplankton concentration) was lowest at the lower nutrient loading simulation. During late summer, mean menhaden growth rates were inversely proportional to nutrient loading rates and menhaden grew best when nutrient loadings were the lowest. Upriver to mid-river phytoplankton patches drove overall mean calculations. Model results suggest that more research is needed on water quality model predictions of phytoplankton levels at a high level of spatial and temporal resolution, menhaden foraging, and menhaden habitat selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.