Abstract
This study was designed to investigate, using neurophysiologic techniques in an in vivo rat model, the effect of application of nucleus pulposus to the nerve root on the neural activity of the dorsal root ganglion and the corresponding receptive fields. To assess a further role of the dorsal root ganglion in mechanisms of radicular pain in lumbar disc herniation. It has been suggested that the epidural application of autologous nucleus pulposus without mechanical compression causes nerve root inflammation and related radicular pain in lumbar disc herniation. Concerning the dorsal root ganglion, its mechanical hypersensitivity and potential for generating ectopic discharges have been reported. However, the effect of autologous nucleus pulposus on the dorsal root ganglion is uncertain. In adult Sprague-Dawley rats spontaneous neural activity was recorded from the surgically exposed L5 dorsal root using electrophysiologic techniques, and the mechanosensitivity of L5 dorsal root ganglia and corresponding receptive fields on the hind paw were measured using calibrated nylon filaments. Autologous nucleus pulposus from the tail or fat was implanted at the L5 nerve root. Neural activity was monitored for 6 hours. Spontaneous neural activity in the nucleus pulposus group gradually increased and showed significant differences compared with the fat group from 2.5 to 6 hours after exposure. The mechanosensitivity of the dorsal root ganglia showed significant increases compared with the fat group. After application of nucleus pulposus to the nerve root, the dorsal root ganglion demonstrated increased excitability and mechanical hypersensitivity. These results suggest that nucleus pulposus causes excitatory changes in the dorsal root ganglion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.